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Abstract: Wearable sensing solutions have emerged as a promising paradigm for monitoring the 1

human musculoskeletal state in an unobtrusive way. To increase the deployability of these systems, 2

considerations related to cost reduction and enhanced form factor and wearability tend to discourage 3

the number of sensors in use. In our previous work, we provided a theoretical solution to the problem 4

of jointly reconstructing the entire muscular-kinematic state of the upper limb, when only a limited 5

amount of optimally retrieved sensory data is available. However, the effective implementation of 6

these methods in a physical, under-sensorized wearable has never been attempted before. In this 7

work, we propose to bridge this gap by presenting an under-sensorized system based on Inertial 8

Measurement Units (IMUs) and surface Electromyography (sEMG) electrodes for the reconstruction 9

of the upper limb musculoskeletal state, focusing on the minimization of the sensors’ number. We 10

found that, relying on two IMUs only and eight sEMG sensors, we can conjointly reconstruct all 17 11

Degrees of Freedom (5 joints, 12 muscles) of the upper limb musculoskeletal state, yielding a median 12

normalized RMS error of 8.5% on the non-measured joints and 2.5% on the non-measured muscles. 13

Keywords: Human multimodal motion tracking, Optimal Design, Sensor Fusion, IMUs, sEMG 14

sensors, upper limb, wearable sensing. 15

1. Introduction 16

The evaluation of the musculoskeletal state of the human body is crucial for different 17

applications, such as rehabilitation and assistive technologies [1], sportsmen monitoring 18

[2,3] and human-robot interaction and collaboration [4]. Such monitoring is also important 19

to prevent possible work-related musculoskeletal disorders, providing tools for a proper 20

ergonomics evaluation [5–7] informed by suitably devising biomechanical models [8]. 21

Considering the degrees of freedom (DoFs) of the human body, i.e., joints and muscular 22

sites, a correct tracking of human kinematics and muscular activity would require the 23

acquisition of a large amount of data and the usage of many sensors [9]. To record muscle 24

activation, the standard solution is surface electromyography (sEMG), which relies on 25

the use of electrodes fastened to the skin that measure the electric signal (expressed in 26

mV) produced by muscles. For kinematic measures, instead, the gold standard has been 27

traditionally provided by optical systems, which can monitor human body motion by 28

recording the 3D position in time of active or passive optical markers. These systems have 29

been proved to be efficient and reliable, but they come with limitations of the operating 30

space. Furthermore, occlusions can also occur, thus affecting the overall reconstruction 31

performance. This problem also affects other marker-less, camera-based methods that 32

have been proposed [10]. A solution to address the problem of environmental occlusion 33

was presented in [11], where the authors exploited radio signals to estimate human pose 34

Version November 22, 2023 submitted to Sensors https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com
https://orcid.org/0000-0001-7201-6632
https://www.mdpi.com/journal/sensors


Version November 22, 2023 submitted to Sensors 2 of 15

through walls. However, this approach cannot be generalized to any distance from the 35

sensor, or any type of occlusion, e.g. induced by the presence of other people. 36

Wearable solutions have emerged as a promising paradigm to enable ecological moni- 37

toring, overcoming the workspace limits that affect camera-based methods. Ergonomics, 38

form-factor related considerations tend to discourage the usage of cumbersome sensors. In 39

this regard, Inertial Measurement Unit (IMU)-based approaches have found fertile ground 40

for kinematic tracking, thanks to their compact design and reduced costs [12,13]. 41

However, to obtain a full biomechanical assessment of the human body, kinematic 42

information is not sufficient but it should be complemented with the recording of muscular 43

activation, e.g., to correctly evaluate the fatigue level of the user during task execution 44

[14–16]. Simultaneous acquisition and fusion of muscular and kinematic information have 45

been proposed, e.g. in [17], where measurements from IMUs and mechanomyography were 46

exploited for classifying different actions of the lower limb and for evaluating pathological 47

state. Of note, wearable solutions (eventually complemented, in some cases, by cost 48

considerations) tend to discourage the usage of many sensors mounted on the body, which 49

could negatively impact the form factor and the wearability of the device [18]. A possible 50

approach to tackle this issue is to exploit the covariation schemes between functional 51

elements or DoFs of our body, usually named motor synergies [19]. Indeed, several works 52

demonstrated the existence of correlation patterns between different joints and/or muscles 53

in the upper [20–23] and lower limb [24,25]. The underlying idea is that the actuation of 54

a large number of DoFs can be described as a linear combination of a smaller number of 55

generators. In terms of actuation schemes, this concept has been profitably exploited in 56

robotics for the design [26], planning [27,28] and control [29] of anthropomorphic devices, 57

with a special focus on robotic hands and manipulators. In all these cases, a small number 58

of independent actuation variables can be combined to drive a larger number of DoFs in a 59

human-like fashion. 60

Interestingly, the same paradigm can also be used to inform simplified sensing strate- 61

gies for human motion. In [30], we demonstrated that it is possible to complement scarce 62

and noisy sensory information on hand grasping posture by fusing it with a priori data 63

through minimum variance estimation (MVE). A priori data represented the most frequent 64

human grasping postures organized in terms of interjoint covariation patterns. In [31], we 65

further built on this approach and identified which were the optimal hand joints that yield 66

the minimization in average of the reconstruction error, exploiting the minimization of the 67

a posteriori covariance matrix. These results allowed us to design a wearable sensing glove 68

to reconstruct the hand pose, relying on a lower number of sensors [32]. However, these 69

approaches are based on the assumption that the a priori information is related to static pos- 70

tures, and their application to the estimation of temporal trajectories cannot be performed 71

in a straightforward manner. Additionally, it is hard to develop a trustworthy estimation 72

of the covariance matrix from heterogeneous data due to the concurrent reconstruction of 73

multimodal motion-related data (such as joint angles and EMG signals) [33]. In [34], we 74

proposed to generalize these methods for the estimation of multi-modal time-varying data 75

of the upper limb. The method built upon the existence of covariation patterns in human 76

upper limb motions, as we demonstrated in [23] and the usage of functional analysis for 77

reconstructing the whole trajectory over time and estimating the covariance matrix. In brief, 78

a base of functional Principal Components (fPCs), derived in advance from a collection 79

of upper limb joint motion profiles of daily living activities, was employed to map the 80

temporal measurements of a reduced number of joints and muscles on the extended state 81

space of weights and average trajectories/muscles envelopes. The state missing part was 82

then reconstructed using MVE. The temporal evolution of the entire muscle-skeletal system 83

is then appropriately integrated with the estimated extended state. 84

However, in [34], the analysis was performed assuming as state variables the joint 85

angular values and the muscle envelopes, while the non-linear mapping between sensors 86

and state variables was not considered. In this paper, we build upon our previous work 87

and extend the method to design an under-sensorized wearable system for multimodal 88
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Figure 1. Schematic flow of the estimation procedure. First temporal signals are mapped on the
weight vector through the fPC bases (Encoding). After that, Minimum Variance Estimation (MVE) fuses
the encoded measures with a priori knowledge to estimate for the missing part of measures. In the
end, the estimated weight vector is converted back to the temporal domain (Decoding).

acquisition of human upper limb trajectories. We assume to have at disposal IMUs for 89

kinematic recording and surface sEMGs for muscular activity acquisition, and that their 90

number is not in a bijective relation with all the DoFs used to describe the whole muscle- 91

skeletal status. We generalize the optimal sensing setup identified in [34] to the more 92

challenging case in which one sensor may record the activity of multiple DoFs. Indeed, 93

since the goal is now to reduce the number of employed sensor elements, instead of 94

selecting the single optimal degrees of freedom, i.e., the ones that are associated with a 95

reduced estimation uncertainty, our targeted optimal joint angles are those that enable a 96

compromise between optimal reconstruction and the minimization of the sensing resource 97

in use. To target both objectives, we select as measures the shoulder joints. In this way, we 98

minimize the differences with respect to the optimal setup reported in [34]. Finally, we 99

build a real prototype of an optimal under-sensorized setup for upper limbs (i.e., which 100

has a number of elements lower than the number required to measure the entire state of 101

the system), with only two IMUs to retrieve angles from the shoulder by implementing 102

an Unscented Kalman Filter (UKF). We integrated these measurements with the optimal 103

sEMGs identified in [34], discarding the others, and using a commercially available fully 104

sensorized solution (i.e., Xsens) to have a ground truth for result comparison. Extensive 105

tests on a dataset collected with our framework demonstrate that our method can effectively 106

compensate for missing recordings (corresponding to two out of five joint angles and four 107

out of twelve sEMG signals), with minimum impact on the estimation error, achieving 108

a median normalized RMS error of 8.5% on the non-measured joints and of 2.5% on the 109

non-measured EMGs. 110

The paper is organized as follows: we first summarize the theory underpinning our 111

optimization method and its application to our case, with the UKF implementation for 112

retrieving shoulder angles; then, we discuss the experimental setup for data acquisition 113

and system testing, and the results. 114

2. Methods 115

2.1. Theoretical foundations: Minimum Variance Estimation (MVE) 116

Here we briefly summarize the results in [34]. The idea is to translate the recorded 117

movements into a static representation, use it to obtain the a priori covariance matrix, 118

perform the estimation and then re-express the movements in the temporal domain. To do 119

this, we define three separate phases in this method: encoding, estimation and decoding. 120

The procedure is briefly depicted in Fig. 1. 121
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2.1.1. Encoding and Decoding phases: functional Principal Component Analysis 122

Functional Principal Component Analysis (fPCA) is a statistical method to identify 123

functional primitives from time-varying data. In this section, we will provide a brief 124

introduction to the theory, while referring to [35] for more details. For the sake of simplicity, 125

since each DoF can be analyzed separately from the others with this method, the equations 126

will be defined for a single joint. Let us consider N independent observations of joint 127

temporal evolution q1(t), ..., qN(t) with t ∈ [0, 1]. A generic motion can be decomposed as 128

a weighted sum of basis elements Si(t), known as functional Principal Components (fPCs): 129

q(t) ≃ q̄ + S0(t) +
smax

∑
i=1

αiSi(t) (1)

where q̄ is the average value of the joint, S0(t) is the average trajectory across all the trajec- 130

tories in the dataset, αi is the weight associated with the ith basis element Si(t) and smax is 131

the number of basis elements. The output of fPCA is a basis of functions {S1(t), ..., Ssmax (t)} 132

which maximizes the explained variances of joint motions throughout the whole dataset. 133

For more detail on how these fPCs can be extracted, we refer the interested reader to [35]. 134

This decomposition can be done for each DoF of the considered system, regardless of 135

whether it is a kinematic or muscular measure, and it allows to translate the trajectories 136

from the time domain to the fPCs weight domain. Then, it is possible to define an extended 137

state xe , which does not depend on time, to represent movements. Given M degrees of 138

freedom and using k fPCs for the decomposition, the extended state, from which we can 139

compute the covariance matrix P0, can be defined as: 140

xe =
[
x̄1 αx1

1 . . . αx1
k | . . . | x̄M α

xM
1 . . . α

xM
k

]T (2)

where xi is the generic i-th degree of freedom. This new state definition is the output of the 141

encoding phase and it will be used as state of the MVE. 142

When performing fPCA to decompose a signal, the noise is usually represented by the 143

higher-order components. Indeed, the fPC decomposition allows truncating this basis to 144

include only a few elements ordered based on the variance they can account for, giving 145

an additional tool to minimize the effect of noise in the a priori covariance matrix, which 146

will be introduced in the next section. In our work, we used the first 7 functional Principal 147

Components out of 10, which can account for a cumulative variance greater than 95% for 148

each DoF. 149

Regarding the decoding phase, given the estimation of the extended state x̂e provided 150

by the MVE, we can return to the temporal domain by combining the fPCs through (1). 151

2.1.2. Estimation phase: Minimum Variance Estimation 152

The Minimum Variance Estimation (MVE) approach is an algorithm that leverages 153

on the information of a set of a priori observations, organized in terms of mean µ0 and 154

covariance matrix P0, to estimate missing or noisy measurements. In the following, we will 155

briefly describe this method, while referring to [30] for more details. 156

Considering a vector of measures y ∈ Rd provided by a selection of d sensors, and 157

assuming a linear relationship between the state variables x ∈ Rl and the measures y, 158

then y = Hx + ν, where H ∈ Rd,l is a full row rank measurement matrix and ν is the 159

measurement noise. The goal is to estimate x given y when d < l. If the number of 160

realizations of x (collected in a matrix of a priori X ∈ Rl,N) is large enough, the covariance 161

matrix results: 162

P0 =
(X − x̄)(X − x̄)T

N − 1
(3)
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where x̄ is a matrix whose columns contain the average µ0 of X. Given P0, the best estimate 163

x̂ of x is the vector which solves the following optimization problem: 164

x̂ = argmin
1
2
(x − µ0)

T P−1
0 (x − µ0). (4)

Assuming that ν is the zero mean Gaussian noise with covariance matrix R, the solution of 165

(4) can be found in closed form as: 166

x̂ = (HT R−1H + P−1
0 )−1(HT R−1y + P−1

0 µ0). (5)

We can also define the a posteriori covariance matrix, which contains information 167

regarding the uncertainty of the associated state estimation, as: 168

PP = (HT R−1H + P−1
0 )−1 (6)

Its maximum eigenvalue is a measure of the estimation uncertainty and its dependence 169

on the selection matrix H allows to link the quality of the estimation with sensor placement. 170

Hence, we can set up the following optimization problem to search for the best selection 171

matrix Hopt given a certain number of sensors: 172

Hopt = argmin
H

σmax(PP(H)) (7)

There are different ways to solve this optimization. However, in our case, we have to 173

preserve the particular structure of the selection matrix. Indeed, the matrix H is composed 174

by square blocks Hi of dimension k + 1, each of which is a diagonal matrix corresponding 175

to the average signal and the first k fPC coefficients of the i-th degree of freedom, which 176

represent the extended state in (2). To deal with this constraint, in our previous work [34], 177

we used a genetic algorithm. 178

2.2. Musculoskeletal model and sensor choice 179

Figure 2. Kinematic model of
the human arm (the angle q3

is directed outwards).

Figure 3. EMG sensor placement in accordance with SENIAM
recommendations (back and front views of the right arm). In blue,
the muscles used as measures in the MVE algorithm; in red, the
estimated muscles.

We considered the same arm muscles (shown in Fig. 3) and the same kinematic model 180

(represented in Fig. 2) composed of three rotational joint for the shoulder and two for the 181

elbow reported in [34]. 182

In [34] the authors demonstrated that a good estimation of the biomechanical state 183

of the arm can be reached by measuring 3 joint angles (q1, q3, q4 in Fig. 2) and 8 muscular 184

activation signals (indices 1, 2, 4, 7, 8, 9, 11, 12 in Fig. 3). While the optimal muscle 185

selection can be easily translated into optimal sEMG sensor placement, for the kinematic 186
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measurements this is not necessarily true, since IMUs can capture the motion of several 187

DoFs, depending on their placement. Indeed, usually two IMUs are placed before and 188

after the anatomical articulation to estimate the joint angles of the kinematic model. To 189

implement the results obtained in [34], a minimum number of 3 IMUs (one on the shoulder, 190

one on the arm and one on the forearm) would be required. Since we are not assuming 191

to measure every single joint independently from each other, our goal is now to reduce 192

the number of sensor elements while maximizing the lowest eigenvalue of the a posteriori 193

covariance matrix Pp. Therefore, the idea is to select a sub-optimal set of joint angles (i.e., 194

the ones of the shoulder q1, q2, q3), which differs from the optimal case for just one DoF, 195

but requires only two IMUs for sensing. 196

2.3. Unscented Kalman Filter for joint angles estimation via IMUs 197

Since the kinematic state of the upper-limb, and in particular the joint angles q and 198

joint angular velocities q̇, cannot be directly measured, a possible solution is based on an 199

Unscented Kalman Filter (UKF) [36], which fuses the information given by a kinematic 200

model of the arm with the measures of gyroscopes and accelerometers collected by two 201

IMUs. Furthermore, the integration of magnetic field measures allows to avoid the drifting 202

behavior of the inertial sensors, which drastically limits the performance of the estimator. 203

Since we are solely interested in the measurement of the shoulder angles, from now on 204

we can define the shoulder joint vector as q =
[
q1, q2, q3

]T . The state space model of our 205

UKF is based on the state x(k) =
[
q(k), q̇(k)

]T , which contains the shoulder joint angles 206

and the respective joint angular velocities at time k. The dynamic model of the i-th joint 207

angle can be described with a first-order approximation as: 208{
qi(k + 1) = qi(k) + q̇i(k) · ∆T + wq(k)
q̇i(k + 1) = q̇i(k) + wq̇(k)

(8)

where ∆T is the sampling time and the state is modelled as a random walk with Gaussian 209

white noises wq and wq̇. 210

The definition of the measurement model is based on the relationship between the 211

inertial and magnetic field variables ω, a and m in the frames attached to the scapula IMU 212

{SR} and the arm IMU {AR}, passing through each pair of consecutive Denavit-Hartenberg 213

frames {i} and {i + 1}. Assuming that the only value measured by the accelerometers is 214

the gravitational acceleration (i.e., the linear acceleration of the IMU and the Coriolis and 215

centripetal accelerations are negligible) and that the two magnetometers are affected by the 216

same disturbances, it is possible to write: 217
ωi+1

i+1 = Ri+1,i
(
ωi

i + zi · θ̇i+1
)

ai+1
i+1 = Ri+1,i ai

i
mi+1

i+1 = Ri+1,i mi
i

(9)

where Ri+1,i = Ri+1,i(qi+1) and θ̇i+1 = q̇i+1 when the relative motion of two consecutive 218

frames depends on a revolute joint Ji+1 in between, following the Denavit-Hartenberg 219

parametrization (in this case, zi is the i − th joint axis), while Ri+1,i is constant and θ̇i+1 = 0 220

otherwise. 221

The goal is to write the relationship between the measured variables in the frame {SR} 222

of the scapula IMU and those in the frame {AR} attached to the arm IMU using the state 223

variables. To do this, we first define the generic vector ξn =
[
ωn

n , an
n, mn

n
]T ∈ R9, which 224

contains all the variables associated with the n-th IMU in its frame {n}. 225
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Choosing as measures y = ξAR , i.e., the IMU measurements after the processing 226

described in Section 3.1, the measurement model depends only on the state and on the 227

output noise and results in: 228{
h = h(q, q̇, ξSR , νS)

y = ξAR + νA
(10)

The computation of h for the acceleration and magnetic field components is based on 229

the simple relations aAR = RAR ,SR aSR and mAR = RAR ,SR mSR , where the transformation 230

RAR ,SR corresponds to: 231

RAR ,SR = RCA · Rq(q1, q2, q3) · RCS (11)

where Rq(q1, q2, q3) is the rotation matrix between the Denavit-Hartenberg (D-H) frames, 232

while RCA and RCS are the calibration rotation matrices obtained through the calibration 233

procedure of Section 3.2. So, the acceleration and magnetic components of h depend only 234

on q and ξSR . The relation between the angular velocities ωSR and ωAR can be obtained 235

following the procedure in (9) from the first frame to the last one; in this case, the output 236

function also depends on q̇. 237

The magnetometer raw data are calibrated through the procedure described in 3.1. 238

However, this step does not remove the disturbances that may affect the magnetic sensors, 239

so we modified our UKF to increase the magnetometer noise to lessen this contribution if 240

a magnetic disturbance is acting on the sensor itself, as done in [37]. Indeed, if the norm 241

of the magnetic field m does not fall within a certain range with respect to the normalized 242

value mnorm = 1, we sensibly increase the noise variance of magnetometer measurements 243

inside the output noise covariance matrix R of the UKF. In other terms, the magnetometer 244

noise components σ2
m inside the matrix R were chosen as: 245

σ2
m = f (||m|| − 1) + σ2

const, (12)

where f (·) is a function that depends linearly (or exponentially) on the difference ||m|| − 1 246

through a parameter k (in our case, f (||m|| − 1) = k(||m|| − 1), with k = 10). 247

Hence, the UKF allows to estimate the shoulder joint angles q, leveraging on the 248

inertial and magnetic field measures of the IMUs. 249

3. Experimental setup 250

The goal of this experimental setup is to gather a set of data to validate both the UKF for 251

the measurement of shoulder joint angles and the MVE to estimate missing measurements 252

for biomechanical assessment of the human arm. 253

We asked 9 able-bodied subjects (6 male and 3 female, age 28.2 ± 2.7, all right-handed) 254

to perform the 30 tasks of daily living described in the SoftPro protocol [38]. Each of these 255

tasks was repeated three times for a total of 90 movements per subject. Participants did 256

not have any physical limitations that could have affected the experimental outcomes. 257

They gave their informed consent to participate. The procedures were approved by the 258

Committee on Bioethics of the University of Pisa (Review No. 30/2020) in accordance 259

with the Declaration of Helsinki. The pose in between movements consisted in resting the 260

right hand flat on the table. Since these 90 movements were recorded in one shot, they 261

were shuffled before being instructed to the subjects, to obtain a homogeneous dataset, not 262

influenced by muscular fatigue. 263

The kinematic data were recorded with LSM9DS1 inertial sensors embedded in Ar- 264

duino Nano 33 BLE boards and connected to a computer through serial communication 265

at a sample rate of 120 Hz. The muscular data were recorded with the Delsys Bagnoli 266

EMG System with a sampling frequency of 2400 Hz. Twelve EMG sensing elements (as 267

depicted in Figure 3) were placed following SENIAM guidelines to minimize the cross- 268

talk phenomenon between near muscles and is the same as the one adopted in the MHH 269

dataset [38]. The EMG signals and the IMU data were recorded through a custom routine 270

which guaranteed synchronization between them. To validate the Kalman Filter results, 271
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(a) Front view (b) Back view (c) IMU positioning
Figure 4. Different views of the complete sensor setup (including the ground truth sensors) used
during the experimental phase. The full-body view of the system - composed by the Delsys Bagnoli
EMG system, the Xsens MTw Awinda wearable system and the two LSM9DS1 inertial sensors
embedded in Arduino Nano 33 BLE boards - is shown in Fig. 4a and Fig. 4b. A detail of the IMUs
positioning is depicted in Fig. 4c.

we employed as ground truth the Xsens MTw Awinda wearable system, which returns 272

the upper-body posture of the subject. The kinematic data were recorded at the Xsens 273

maximum sample rate of 60 Hz. To synchronize the Xsens data, collected via proprietary 274

software, with the EMG and IMU signals, we performed Dynamic Time Warping (DTW) 275

[39]. 276

3.1. IMU processing 277

Before using the IMU data, removing the constant biases affecting gyroscopes and 278

accelerometers is important. An example of a debiasing routine can be found in [40]. 279

The Arduino Nano 33 BLE boards, which were used for our work, directly provide the 280

acceleration normalized with respect to the gravity acceleration g = 9.81m/s2. 281

Regarding the magnetic measures, the magnetometer raw data Bmr in the sensor 282

frame {B} lie on an ellipsoid manifold, as demonstrated in [41]. In the same work, to 283

translate the raw data to the origin of the sensor frame and map them onto the unitary 284

sphere, a Maximum Likelihood Estimator is used to determine the magnetometer optimal 285

calibration parameters: a SE(3) transformation matrix to align the ellipsoid axes with a 286

calibration frame {C} and center it on its origin, and a scaling matrix to stretch the ellipsoid 287

on the unitary sphere. After this mapping, a second step allows to find the optimal rotation 288

matrix that minimizes the error between the data mapped on the unitary sphere Cm and 289

the original raw data Bmr. 290

From a practical point of view, these calibration parameters can be determined with an 291

initial data acquisition, during which the IMU should be rotated in as many configurations 292

as possible. In this way, the shape of the ellipsoid can be better defined, avoiding sampling 293

a small surface of the ellipsoid, for which the measurement noise can badly affect the 294

parameter extraction. 295

3.2. IMU frames calibration 296

Prior to the estimation phase, it is necessary to evaluate the effective orientation of 297

each sensor X attached to the body, i.e., to identify the rotation matrices between the sensor 298

frames {SR} and {AR} and the first/last Denavit-Hartenberg frames, respectively. 299
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In this section, we briefly introduce the approach used in our work and direct the 300

interested reader to [42] for more details. The procedure consists in a two-phase data 301

acquisition: the first part is performed with the subject standing still with the arms straight 302

along the body (N-pose); in the second part, the subject is asked to slightly bend forward 303

with the arm fixed to the body. These data return two readings of gravity acceleration 304

in two different poses that are used in a series of cross products to define the calibration 305

matrix. 306

3.3. EMG processing 307

Surface EMG signals can be affected by different sources of noise (relative motion 308

of soft tissues, bad mechanical or electrical connections, cross-talking between different 309

muscles, etc...). Several works in literature provide solutions to this problem [43,44]. For 310

our application, we took inspiration from [45] and implemented the following filtering 311

steps: 1) a first order low-pass Butterworth filter with a cutoff frequency of 500 Hz to reduce 312

the high-frequency noise; 2) a first order high-pass Butterworth filter with a cutoff of 20 Hz, 313

which allows to remove the constant and slowly-changing behaviors; 3) the rectification 314

of the filtered signal; and 4) another first order low-pass Butterworth filter, with a cutoff 315

frequency of 1 Hz, for the extraction of the signal envelope. 316

3.4. From XSENS quaternions to joint angles 317

For each link l of the arm kinematic chain, the XSENS system returns as output the 318

quaternion Ql , which expresses the orientation between the frame of the link and the 319

system world frame. So, given the quaternions Qs, Qa and Q f of the shoulder, arm and 320

forearm respectively, we estimated the shoulder joint angles q1,q2 and q3 and the elbow 321

angles q4 and q5 through an Unscented Kalman Filter. Indeed, we can model the dynamics 322

of the i-th joint angle as a random walk with Gaussian white noise wqi : 323

qi(k + 1) = qi(k) + wqi (13)

Then, we can use as measures y1 for the estimation of the shoulder joints the orientation 324

between the shoulder and arm link y1 = Qsa = Q∗
s ⊗Qa, where ⊗ represents the quaternion 325

product. Similarly, we can express the orientation between the arm and the forearm as 326

y2 = Qa f = Q∗
a ⊗ Q f and use it as the second block of the output vector. So, the related 327

output functions can be described as: 328{
h1 = [Q01(q1)⊗ Q12(q2)]⊗ Q23(q3)

h2 = Q34(q4)⊗ Q45(q5)
(14)

where the generic quaternion Qi,i+1 expresses the orientation between two subsequent 329

Denavit-Hartenberg frames through joint qi. 330

4. Results 331

4.1. UKF Validation 332

To assess the UKF performance, 3 different metrics were used: the Root Mean Square 333

(RMS) error between joint evolution estimated and the ones of the Xsens, used as ground 334

truth; the Normalized Root Mean Square (NRMS) obtained by normalizing the RMS error 335

with respect to the maximum range reached by each joint; the correlation index between 336

the two signals (the UKF one and the ground truth) to evaluate their similarity in terms of 337

temporal evolution. 338
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Table 1. UKF validation with respect to the Xsens system for shoulder joints estimation. In each
column, RMS, Normalized RMS and correlation coefficient are reported in terms of the median and
half of the interquartile range.

RMS Error NRMS Error Correlation

q1 10.9◦ ± 4.6◦ 11.27% ± 4.72% 0.906 ± 0.084
q2 6.49◦ ± 1.45◦ 6.93% ± 1.525% 0.956 ± 0.028
q3 11.1◦ ± 3.85◦ 11.01% ± 3.79% 0.930 ± 0.07

Regarding the RMS, we reached a median value of around 10◦ (NRMS around 10%), 339

with a performance comparable with other similar solutions presented in literature [46–48], 340

with an RMS error median between 5.2◦ to 7.9◦ in Slade et al. and between 4.95◦ to 7.03◦ in 341

Peppoloni et al.. The similarity between the estimated joint trajectories and the reference 342

ones is also high, since it is about 0.93 for all the angles. In Table 1 the detailed results 343

of these three metrics are reported, in terms of median and interquartile range, for each 344

shoulder joint angle. 345

(a) Joint angles (b) EMGs
Figure 5. Normalized RMS Error computed for each DoF (measured DoFs in blue, non-measured
DoFs in red).

(a) Joint angles (b) EMGs
Figure 6. Example of MVE on a movement of the test dataset (in blue: reference movement; in green:
movement reconstruction with fPCs; in red: movement obtained through MVE); * = non-measured
DoFs.

4.2. MVE Validation 346

To evaluate the goodness of estimation performed by MVE, we computed the RMS 347

error (RMSE) and NRMS error (NRMSE) comparing it with the ground truth value recorded 348

during tasks execution. In Fig. 5 the NRMSE between the real signal and the output of the 349
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MVE for each DoF is reported in terms of median and interquartile range. The measured 350

DoFs are represented in blue, while the estimated ones in red. For the kinematic part, the 351

NRMS error on the measured joints is about 2.4%. We can notice, as expected, a higher error 352

for the estimated joints with respect to the measured ones, with a median around 8.5%. 353

However, the error level is comparable with the one reached in other solutions presented 354

in literature [36], with the advantage of a lower number of used sensor elements. For 355

the muscular side, the normalized error level achieved is even lower (maximum median 356

NRMSE just above 4%). 357

In terms of RMSE, it reaches 17.1◦± 4.97◦ for the non-measured joint angles, while for 358

the muscles is 0.003 mV±0.002 mV (values expressed in median ± interquartile range). This 359

result, compared to the one reported in [34] (2.18◦ ± 1.32◦ for the joints and 0.003±0.002 360

mV for the muscles), can be considered sufficiently good, as this joint angle choice was 361

not the optimal one found in [34] and referred to a selection of individual DoFs, but 362

represents an approximation that fulfills the requirement of the minimum number of 363

sensors required for an effective implementation of the measurements. Furthermore, in 364

[34], the kinematic measurements considered for the analysis were provided by a ground 365

truth optical system, while in our case we used the information measured by the IMU- 366

based system we developed - which intrinsically comes with an estimation error, although 367

comparable with or minor than the one of other related works in literature. An example of 368

a random estimated movement is presented in Fig. 6. The not measured DoFs are marked 369

with a star (*). These graphs confirm the results obtained in terms of RMS error. 370

5. Conclusions 371

The topic of human-robot interaction and collaboration, as well as monitoring the 372

human musculoskeletal state in working environments, has gained increasing attention in 373

recent years. In particular, the assessment of the musculoskeletal state could bring many 374

benefits in terms of improving working conditions and preventing work-related disorders. 375

In this paper, we present a technological solution that relies on a reduced number 376

of wearable sensing units (IMUs and sEMGs) and provides an estimation of the whole 377

musculoskeletal state. 378

To do this, we developed an under-sensorized wearable system which exploits the 379

Minimum Variance Estimation approach to assess the biomechanical state of the human 380

arm. Additionally, an Unscented Kalman Filter was implemented to directly obtain the 381

joint angle trajectories from the IMUs measurements. This setup was extensively tested 382

through the collection of a new dataset of daily living activities. The obtained results are 383

promising, as they show an average normalized error of 8.5% on the non-measured joints 384

and of 2.5% on the non-measured EMGs. Our system allows an accurate state monitoring, 385

with a reduced number of sensors, thus increasing wearability and reducing discomfort. 386

Our outcomes can pave the path toward unobtrusive wearable monitoring of multi- 387

modal quantities. First, our theoretical framework allows us to overcome the limitations 388

of data-driven methods that rely on the usage of large training datasets that can be used 389

to complement scarce sensory information. Of note, such a theoretical framework was 390

already presented in our previous publication [34]. Second, we provided, for the first time, 391

an implementation of our optimal design, showing that, with a reduced set of optimally 392

placed sensors, we can reconstruct the whole musculoskeletal state of the upper limb. 393

This under-sensorized implementation leads to the reduction of the number of sensors, 394

enhancing the overall system wearability. While this is already a good achievement for the 395

monitoring of the upper limb, our implementation can pave the path toward whole-body 396

multi-modal sensing, where ergonomics and economic constraints pose even more strict 397

constraints on the number, and quality, of sensors in use. 398

Starting from these results, the next step will be to compare this approach with a 399

fully data-driven approach (e.g. Deep Generative Adversarial Network [49]) to evaluate 400

the performance of our MVE-based solution with respect to the ones obtained by deep 401

learning techniques, and eventually propose hybrid approaches. Another interesting path 402
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to explore would be to find a way to use this setup online, as the functional decomposition 403

requires a movement to be recorded in advance. In the future, we will investigate other 404

techniques for the fusion of IMU and EMG data — and compare and integrate them with 405

our approach also targeting action recognition. It will also be interesting to study zero 406

crossing/time-frequency domain for gesture recognition and HRI [50,51]. 407

Finally, these methods could be extended to the entire human body and therefore 408

assess the entire skeletal and muscular state of a person in different application contexts, 409

such as rehabilitation and human-robot collaboration. 410
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